Double layer polarization and non-linear electroosmosis in and around a charged permeable aggregate

نویسندگان

  • Partha P. Gopmandal
  • S. Bhattacharyya
چکیده

We have studied the migration of a charged permeable aggregate in electrolyte under the influence of an axial electric field and pressure gradient. The migration of the positively charged aggregate leads to a deformation of the anionic cloud around it. The hydrodynamics of the aggregate is governed by the interaction of electroosmotic flow in and around the particle, hydrodynamic friction and electric force experienced by the aggregate. We have computed the non-linear Nernest-Planck equations coupled with the DracyBrinkman extended Navier-Stokes equations and Poisson equation for electric field through a finite volume method. The permeability of the aggregate enable the counterion penetration. The penetration of counterions depends on the volume charge density of the aggregate and ionic concentration of electrolytes at a fixed field strength. The retardation effect due to the double layer polarization increases the drag force compared to an uncharged aggregate. Increase in migration sped from the electrophretic velocity of the aggregate produces further asymmetry in charge cloud and reduces the electric body force exerted on the particle. The permeability of the particle have relatively little influence on the electric body force when Double layer is relatively thin. The impact of the key parameters of electrokinetics on the hydrodynamics of the aggregate is analyzed. Keywords—Electrophoresis, Advective flow, Polarization effect, Numerical solution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsteady Heat and Mass Transfer Near the Stagnation-point on a Vertical Permeable Surface: a Comprehensive Report of Dual Solutions

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both assisting and opposing buoyancy forces are considered and studied. The non-linear coupled partial differential equ...

متن کامل

A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-lin...

متن کامل

Boundary layer flow beneath a uniform free stream permeable continuous moving surface in a nanofluid

The main purpose of this paper is to introduce a boundary layer analysis for the fluid flow andheat transfer characteristics of an incompressible nanofluid flowing over a permeable isothermalsurface moving continuously. The resulting system of non-linear ordinary differential equations issolved numerically using the fifth–order Runge–Kutta method with shooting techniques usingMatlab and Maple s...

متن کامل

MHD boundary layer heat and mass transfer of a chemically reacting Casson fluid over a permeable stretching surface with non-uniform heat source/‎sink

The heat and mass transfer analysis for MHD Casson fluid boundary layer flow over a permeable stretching sheet through a porous medium is carried out. The effect of non-uniform heat generation/absorption and chemical reaction are considered in heat and mass transport equations correspondingly. The heat transfer analysis has been carried out for two different heating processes namely; the prescr...

متن کامل

Low-frequency dielectric response of charged oblate spheroidal particles immersed in an electrolyte.

We study the low-frequency polarization response of a surface-charged oblate spheroidal particle immersed in an electrolyte solution. Because the charged spheroid attracts counterions which form the electric double layer around the particle, using usual boundary conditions at the interface between the particle and electrolyte can be quite complicated and challenging. Hence, we generalize Fixman...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012